
Communication with Dallas Semiconductor
MicroLAN devices

in sensors on remote locations

Revision 1.00
September 8, 1998

By
David Smiczek

 Dallas Semiconductor Inc.
and

Jan Kristoffersen
RAMTEX Engineering ApS for Brüel & Kjær A/S

and
Jørgen Bække

Brüel & Kjær Sound And Vibration Measurement A/S

07-10-98 Dallas Semiconductor and Brüel & Kjær

2

Table of Contents

Table of Contents__2

Background __4

Scenario ___4
Figure 1. Repeater in a multiple-protocol scenario __ 4

Primary Goals __5

Derived Goals ___5

Accepted Limitations ___ 5

Transparent MicroLAN Buffer Transactions__5

Transparent MicroLAN Buffer Protocol Specification ________________________________6

Buffer Formats __ 6
General inbound Format ___ 6
General outbound Format __ 6

General Command Formats ___ 6
Inbound Command Format Outbound Response Format ___ 6

Command Overview__7
Table 1a. Single byte commands __ 7
Table 1b. Multi-byte commands, with required repeater data registers. ____________________________ 8
Table 2. Return codes (always follow single byte commands in outbound buffer).___________________ 10

Command Processing Description ___11

Command Processing Sequence ___ 11

Buffer Frame Synchronization___ 12
Figure 2a. Receiving Inbound buffer __ 13
Figure 2b. Inbound command processing __ 14
Table 3. Flow-chart variable descriptions. __ 15
Figure 2c. Outbound space verification __ 15

Detailed Command Description ___16

CMD_ML_RESET ___ 16
Figure 3a. Processing command CMD_ML_RESET ___ 16

CMD_ ML_SEARCH ___ 17
Figure 3b. Processing command CMD_ML_SEARCH__ 18

CMD_ ML_ACCESS ___ 19
Figure 3c. Processing command CMD_ML_ACCESS __ 19

CMD_ ML_OVERDRIVE_ACCESS __ 20
Figure 3d. Processing command CMD_ML_OVERDRIVE_ACCESS____________________________ 21

CMD_RESET__ 22
Table 4. Default values ___ 22
Figure 3e. Processing command CMD_RESET__ 22

CMD_GETBUF __ 23
Figure 3f. Processing command CMD_GETBUF __ 23

CMD_ERROR ___ 23

07-10-98 Dallas Semiconductor and Brüel & Kjær

3

DATA_ ID __ 23
Figure 3g. Processing data register commands __ 24

DATA_ SEARCH_STATE___ 25
Table 5. MicroLAN search state description __ 25

FIRST __ 25
NEXT __ 26
TARGET __ 26
SKIP__ 27

DATA_ SEARCH_CMD___ 28

DATA_MODE ___ 28
Table 6. Bit description of MicroLAN mode flags in the DATA_MODE register.___________________ 28

DATA_CAPABILITY___ 28
Table 7. Bit description of MicroLAN capability flags in the DATA_CAPABILITY register. _________ 29

DATA_OUTBOUND_MAX __ 29

DATA_INBOUND_MAX __ 29

DATA_PROTOCOL __ 29

DATA_VENDOR___ 29

CMD_ ML_BIT __ 29
Figure 3h. Processing command CMD_ML_BIT __ 31

CMD_ ML_DATA__ 32
Figure 3i. Processing command CMD_ML_DATA __ 33

CMD_DELAY ___ 34
Table 8. Delay byte time values.__ 34
Figure 3j. Processing command CMD_DELAY ___ 35

Appendix__36

MicroLAN Search Algorithm ___ 36
Table A1. Bit search information. __ 36
Table A2. Path direction based on the search bit position and the last discrepancy __________________ 36
Figure A1. Searching the MicroLAN based on DATA_ID and DATA_SEARCH_STATE. ___________ 37

07-10-98 Dallas Semiconductor and Brüel & Kjær

4

Background
Dallas Semiconductor MicroLAN devices are used in remote places where the distance between the
device and the Host may exceed the MicroLAN specifications.

In such cases it is useful to be able to have some kind of communication equipment in between the
sensor and the data processing computer which allow data from MicroLAN devices to be efficiently and
transparently transferred, for instance over LAN or WAN networks, in a uniform and consistent way.

The goal with this document is to suggest how this problem can be easily solved in a relative simplified
manner by inserting a transport layer in the driver software, which operates with a uniform frame buffer
format. This extra layer allows different parts of the MicroLAN protocol software to be placed at different
physical locations and in this way extend the versatility of the MicroLAN concept.

Scenario
Dallas Semiconductor devices built into remote sensors are, via a MicroLAN bus and a number of
individual instruments, connected to a host application. The instruments are connected together via
different communication lines and are using different communication protocols. The instruments will in
this respect act as communication repeaters, which transfer data transparently between the Host
application and devices on the MicroLAN bus.

Figure 1. Repeater in a multiple-protocol scenario

Application
(Knowledge about
how data is used)

Presentation
(Knowledge about

data formats)

Transport
(Knowledge about

how to locate
MicroLAN's and

MicroLAN devices)

Protocol
1

Protocol
1

Protocol
2

Protocol
2

MicroLAN
protocol
(lower
layers)

REPEATER 1 REPEATER 2

Communication bus 1 Communication bus 2 MicroLAN

07-10-98 Dallas Semiconductor and Brüel & Kjær

5

Primary Goals
The software in the instruments (the repeaters) should be stable for the lifetime of the instruments (> 10
years) even if new (and yet unknown) Dallas Semiconductor devices are connected the MicroLAN bus.

The communication speed should be optimized. This implies that the number of communication
transactions on the other communication busses (bus 1 and bus 2 in the example) should be minimized,
as these busses may have a much lower bandwidth than the MicroLAN bus itself, and/or may also be
used for other communication tasks not related to the MicroLAN communication.

Derived Goals
All knowledge about specific MicroLAN device types should be isolated to the Host program. The
repeaters should not contain any device specific knowledge.

Communication sessions should be based on whole buffers (instead of individual bytes and bits) in order
to minimize the communication overhead on the intervening busses (bus 1 and 2 in the example).

A few basic and device transparent MicroLAN transactions for the repeaters should be defined, together
with the corresponding buffer formats. These few device transparent transactions should be sufficient for
communication with all types of MicroLAN devices.

The minimum buffer size, which a repeater must be able to handle, shall be well defined. (It is assumed
that the repeaters may have a very limited buffering capability).

If communication with a Dallas Semiconductor device requires a larger buffer it should be possible to
split a MicroLAN transaction over several intervening buffers transferred between the Host and the
repeater which have the MicroLAN connection.

The intervening communication protocols will typically pack the MicroLAN buffer frame in “envelopes”
using their own format (for instance add some header and tail bytes). This is transparent to the MicroLAN
communication and is not a part of this specification.

Accepted Limitations
It is not required that the MicroLAN interface in the repeater handle EPROM programming voltages,
higher speed 'overdrive' communication, or strong pull-up power delivery but its use is to be defined by
this specification.

It is assumed that all communication initiatives through the repeaters are initiated from the host
application.

Transparent MicroLAN Buffer Transactions
The transparent buffer transaction on the MicroLAN bus takes advantage of the fact that transmit and
receive can be done at the same time on a bit to bit basis. (A one (1) must be transmitted by the repeater
when receiving bit frames from a MicroLAN device).

After a transaction the buffer in the repeater will contain any information read from the MicroLAN
(device). The buffer in the repeater with the resulting MicroLAN transaction can then be transmitted back
to the host, if needed. All buffer communication initiatives is taken by the host.

07-10-98 Dallas Semiconductor and Brüel & Kjær

6

Single byte command response (all commands)

Command
code, 1 byte
(1xxx xxxx)

return_code
1 byte

Transparent MicroLAN Buffer Protocol Specification

Buffer Formats
The transparent buffer transaction protocol has two communication buffers defined in the repeater.
One inbound buffer that receives a frame from the host computer and one outbound buffer where the
return frame is constructed.

General inbound Format

General outbound Format

The first byte in both the inbound and outbound frames is a length byte representing the number of bytes
in the frame not including the length byte.

The inbound frame may contain a series of MicroLAN commands. The commands in inbound buffer are
parsed. If the parsing produces an result, the command and result are put in the outbound buffer.

If the length is 0 in an inbound buffer the buffer is ignored and no processing takes place.
The minimum size of the inbound and outbound buffers a repeater must be able to handle is 49 bytes
including the Length byte.

General Command Formats
There are two types of MicroLAN commands. Single byte MicroLAN commands and multi-byte MicroLAN
commands. The MSB bit of the first byte in the header identifies if it is a single byte or a multi-byte
command. If it is a multi-byte command the header consist of two bytes, the command byte and a byte
defining the length of the attached block of data bytes.

Inbound Command Format Outbound Response Format

A command is always a single byte value. The command is always copied from the inbound buffer to the
outbound buffer if the MicroLAN operation produces a result.

data_length used with multi-byte commands is always a single byte with the value as the number of
bytes following the data_length byte in the buffer. With DATA_xxx commands the data_length value is
also used to differentiate between read and write operations on the internal protocol registers. For a
register write, data_length is different from zero. Data is copied from the inbound buffer to the data
register identified by the command. No command or data is copied to the outbound buffer. For a register

Length byte Array of Single and Multiple byte Commands

Length byte Array of Single and Multiple byte Command results

Command
code, 1 byte
(1xxx xxxx)

Single byte command

Command
code, 1 byte
(0xxx xxxx)

Multiple byte command response (specified commands)

data_length
1 byte

data_bytesCommand
code, 1 byte
(0xxx xxxx)

Multiple byte command

data_length
1 byte

data_bytes

07-10-98 Dallas Semiconductor and Brüel & Kjær

7

read, data_length is equal to zero. The command is copied to the outbound buffer. The data_length for
the register identified by the command is copied to the outbound followed by the data from the register.

return_code is always a single byte value following a single byte command in the outbound buffer.

Command Overview

Table 1a. Single byte commands

Command Name Description Code
CMD_ML_RESET Reset all devices on MicroLAN and report if any devices are

responding
80 (hex)

CMD_ML_SEARCH Perform MicroLAN search using the current search state as
specified in the DATA_ID and DATA_SEARCH_STATE registers.

81

CMD_ML_ACCESS Select the current device as specified in the DATA_ID register
using the MicroLAN MATCH_ROM command 55 hex.

82

CMD_ML_OVER-
DRIVE_ACCESS

Select the current device as specified in the DATA_ID register
using the MicroLAN MATCH_ROM command 69 hex which at the
same time sets the device in overdrive mode. If overdrive mode
is not supported by the repeater end this command will return
RET_CMD_UNKNOWN

83

CMD_RESET Reset repeater end to default state. Previous processed data in
the outbound buffer remains unchanged.

84

CMD_GETBUF Return the outbound buffer as it is.
If this command can be processed normally then the command
byte is not copied to the outbound buffer and the length of the
outbound buffer remains unchanged.
If this command can not be processed the CMD_GETBUF
command is returned immediately, typically with the RET_BUSY
return code. This is the only command which causes the outbound
buffer to be returned.
When the CMD_GETBUF command is present in an inbound
buffer it must always be the last command in the inbound buffer.
When a command (in the next inbound buffer) following
CMD_GETBUF is not a CMD_GETBUF then the outbound buffer
is cleared before this command is processed. This allow the host
to request retransmission of the outbound buffer multiple times.

85

CMD_ERROR Error command. Is only used in the outbound buffer of the
repeater end to signal errors to the host. It can typically be errors
resulting from processing of multi-byte commands or any internal
errors in the repeater end. If it occurs in an inbound buffer the
return status should be RET_CMD_UNKNOWN.

86

(Reserved) Single byte commands reserved for further extension of this
protocol. Should return with the return code
RET_CMD_UNKNOWN

87-CF

(Vendor specific) Single byte commands reserved to be defined by the repeater
vendor. If not used, these commands should return with the
return code RET_CMD_UNKNOWN

D0-FF

07-10-98 Dallas Semiconductor and Brüel & Kjær

8

Table 1b. Multi-byte commands, with required repeater data registers.

Command Name Description Command Register
size

DATA_ID Write or read the 64 bit MicroLAN ID number
register.
If the data length of a write command is less
than 8 and more than 0 then the remaining
register bytes are cleared.

00 (hex) 8 (bytes)

DATA_SEARCH_STATE Write or read the 2 byte MicroLAN search
state register. During register write the
internal search algorithm state is cleared.
Write to the first register presets
LastDiscrepancy, (the DATA_ID bit index for
search start). The second register,
LastFamilyDiscrepancy is always cleared by
write.

01 2

DATA_SEARCH_CMD Write or read MicroLAN search command
register. This is the MicroLAN command
used during the CMD_ML_SEARCH
command.

02 1

DATA_MODE Write or read register which define the
options, speed and level of the MicroLAN bus

03 1

DATA_CAPABILITY Read MicroLAN capabilities of repeater
(Operation assumes an inbound data_length
value of 0)

04 (1)
Constant
value

DATA_OUTBOUND_MAX Read max length of outbound buffer in bytes.
(Operation assumes an inboumd data_length
value of 0)

05 (1)
Constant
value

DATA_INBOUND_MAX Read max length of inbound buffer in bytes.
(Operation assumes an inbound data_length
value of 0)

06 (1)
Constant
value

DATA_PROTOCOL Read protocol version identification as a NUL
(/0) terminated C string. The current version
1.00 protocol is “ML100”.
(Operation assumes an inbound data_length
value of 0)

07 (Max 20
incl. \0)
Constant
value

DATA_VENDOR Read repeater vendor identification data as a
NUL (/0) terminated C string. (Operation
assumes an inbound data_length value of 0)

08 (Max 20
incl. \0)
Constant
value

CMD_ML_BIT Initiates write_read MicroLAN communication
bit using the LS bit of the each data byte
provided.

09 (na)

CMD_ML_DATA Initiates a MicroLAN communication block.
The first byte in data defines the total number
of MicroLAN data bytes processed on the
MicroLAN bus called block_length. MicroLAN
processing starts with the data byte following

0A (na)

07-10-98 Dallas Semiconductor and Brüel & Kjær

9

this byte. If the number of data_bytes to
process is larger than the header
block_length-1 then the remaining bytes are
processed equal to an inbound data value of
FF hex.
The result of the MicroLAN processing is
placed in the outbound register.

CMD_DELAY Perform a delay which length is defined by
the attached data byte.
data_length must be 1.

0B (na)

(Reserved) Multi-byte commands reserved for further
extension of this protocol specification.
If the command is unknown to the repeater
end, then the command CMD_ERROR with
return code RET_CMD_UNKNOWN is placed
into the outbound buffer.

0C-4F

(Vendor specific) Multi-byte commands reserved for further
vendor specific purposes.
If the command is unknown to the repeater
end, then the command CMD_ERROR with
return code RET_CMD_UNKNOWN is placed
into the outbound buffer.

50-7F

Total: 12 RAM register bytes

07-10-98 Dallas Semiconductor and Brüel & Kjær

10

Table 2. Return codes (always follow single byte commands in outbound buffer).

Return Code Name Description Return
Code

RET_SUCCESS Command operation successful 00 (hex)
RET_END_SEARCH End of device search, the last device

in ID search was the previous device
found and the search state will now
be reset.

01

RET_BUSY Previous buffer has not been
processed yet.

02

RET_ERROR Unspecified error (stops inbound
buffer processing)

03

RET_NO_DEVICE No devices present on the MicroLAN
(stops inbound buffer processing)

04

RET_ML_SHORTED MicroLAN appears to be shorted
(stops inbound buffer processing)

05

RET_OUTBOUND_OVERRUN Outbound buffer overrun error (stops
inbound buffer processing)

06

RET_INBOUND_OVERRUN Inbound buffer overrun error (stops
inbound buffer processing)

07

RET_REG_OVERRUN Data register overrun error (stops
inbound buffer processing)

08

RET_END_OF_INBOUND Unexpected end of inbound buffer
(stops inbound buffer processing)

09

RET_READ_ONLY Attempt to write a read-only data
register (data_length not 0, stops
inbound buffer processing)

0A

RET_WRITE_ONLY Attempt to read a write-only data
register (data_length is 0, stops
inbound buffer processing)

0B

RET_CMD_UNKNOWN Command unknown (stops inbound
buffer processing)

0C

(Reserved) Reserved for future expansion of this
protocol specification

0D to 7F

(Vendor specific) Vendor specific return codes 80 to FF

Before any vendor specific commands are used by the host the DATA_VENDOR command should be
used to identify that the expected repeater type is present. This precaution will prevent command
contention between different vendors.

07-10-98 Dallas Semiconductor and Brüel & Kjær

11

Command Processing Description

Command Processing Sequence
The inbound and outbound buffers may contain multiple commands in a sequence.

The inbound buffer is parsed and processes sequentially. Most of the commands being processes will
append results to the outbound buffer. The commands sequence in the outbound buffer will thus match
the command sequence order in inbound buffer. The only exception to this is when CMD_ERROR is
inserted in the outbound buffer, and when a busy state RET_BUSY is returned immediately as result of a
CMD_GETBUF command.

The outbound buffer is cleared when an inbound buffer is received, except if the first command in the
inbound buffer is a CMD_GETBUF, which instead causes the outbound buffer to be (re-)transmitted.

If the reception of an inbound buffer results in inbound buffer overflow, the CMD_ERROR command is
inserted in the outbound buffer with a RET_INBOUND_OVERRUN status. The remaining contents of the
inbound buffer is ignored.

If the processing of an inbound buffer results in outbound buffer overflow, either the current command, if
it is a single byte command, or the CMD_ERROR command is inserted in the outbound buffer with the
RET_ OUTBOUND_OVERRUN status. The processing of current command is stopped, and any further
command processing of the inbound buffer stops.

Inbound may also be halted due to MicroLAN conditions of no device present RET_NO_DEVICE or a
shorting of the MicroLAN bus RET_ML_SHORTED. Unknown or improper commands will return codes
(RET_RET_OVERRUN, RET_END_OF_INBOUND, RET_READ_ONLY, RET_WRITE_ONLY,
RET_CMD_UNKNOWN, RET_OUTBOUND_OVERRUN) and stop inbound command processing. Any
error result that halts inbound command processing will be considered the final error message.

A repeater implementation must assure that there always is place in the outbound buffer for one final
error message (CMD_ERROR + error status). After the final error message has been put in the outbound
buffer all processing in the repeater is allowed to stop, as described above, until the outbound buffer has
been transmitted or reset.

If successive error events are detected by the repeater end, after the final error message has been
placed in the outbound buffer, then any following error events should be ignored. This state presets until
the outbound buffer has been reset after transmission or by the CMD_ML_RESET command. This
assures that error information is given to the host in the same sequence as they occur in the slave and
that no previous information in the buffer is lost or overwritten.

When processing of an inbound buffer is halted due to an error condition, the inbound buffer is scanned
for a CMD_GETBUF command. If found, the present content of outbound buffer is send back to the host.
If a CMD_GETBUF is not found, no further command processing takes place until another inbound buffer
is received.

07-10-98 Dallas Semiconductor and Brüel & Kjær

12

Buffer Frame Synchronization
The outbound buffer is transmitted by the repeater end when a CMD_GETBUF command is received.

The CMD_GETBUF can be looked upon as a “token”. When the repeater end is given the
CMD_GETBUF “token” from the host it is allowed to transmit the outbound buffer once. The outbound
buffer must only be transmitted once for each CMD_GETBUF “token”, and any transmission must not
start before a CMD_GETBUF “token” is received (and processed).

If the repeater end is busy the CMD_GETBUF “token” is returned back to the host immediately. The host
end is then allowed to try to send the token back again (single bus polling) or to give it to some other low-
level MicroLAN protocol in operation elsewhere (multibus polling).

CMD_GETBUF must always be the last command (if not the only command) in an inbound buffer as any
further command parsing of the inbound buffer is stopped.

07-10-98 Dallas Semiconductor and Brüel & Kjær

13

Figure 2a. Receiving Inbound buffer

 incoming inbound
 buffer detected

 inbound
length = 0
 ?

Yes

No inbound
 length >
 max?

No

Yes

Ignore this inbound
frame

Process the inbound
buffer (Figure 2b)

Set return value to
RET_INBOUND_
OVERFLOW

Append return
value to outbound
using cmd
CMD_ERROR

 Done

*See reference in Table 3

 CMD_
 GETBUF
 first cmd
 ?

No

Yes

Reset
outbound buffer

Send
outbound buffer

 last_cmd
 = CMD_
 GETBUF
 ?
 ? No

Yes

 last_cmd_
 return=Ψ Halt
 condition
 ?

No

Yes

Ψ Note: All return codes are 'Halt'
conditions except RET_SUCCESS
and RET_END_SEARCH.

07-10-98 Dallas Semiconductor and Brüel & Kjær

14

Figure 2b. Inbound command processing

 End of
 inbound
 buffer?

No

Yes

Retrieve next byte from
inbound buffer (cmd)

 Is it a
 mult-byte
 command
 ?

No

Yes Retrieve next byte from
inbound buffer
(data_length)

Set a pointer to the next
byte in the inbound
buffer (data_bytes) and
adjust command parsing
past data bytes

 Are
there (data_
length)
 bytes?

Yes

No

Process the command
using (cmd, data_length,
data_bytes)
(see Figures 3a to 3j)

Set return value to
RET_END_OF_
INBOUND

 Was
 return aΨ Halt
 condition
 ?

No

Yes CMD_
GETBUF in
 inbound
 ?

Yes

No

 Send
 outbound buffer

 Done

Append cmd
CMD_ERROR and
return value to
outbound.

Ψ Note: All return codes are 'Halt'
conditions except RET_SUCCESS
and RET_END_SEARCH.

 *inbound buffer to
 process

outbound
buffer + 2
 <= max?

Yes

No
Append CMD_ERROR
and return
RET_OUTBOUND
_OVERRUN to
outbound.

 Done

*See reference in Table 3

Set last_cmd = cmd
last_cmd_return = return

07-10-98 Dallas Semiconductor and Brüel & Kjær

15

Table 3. Flow-chart variable descriptions.

Flow Variable Description
cmd the current command code being processed
data_length number of data bytes if current command is a mult-byte command
data_bytes pointer to the start of the data bytes in a mult-byte command
return current result byte of the command being processed
inbound buffer containing the incoming list of commands from host
outbound buffer containing the outgoing response back to the host resulting

from commands in inbound
max the maximum size of the inbound buffer, same as

DATA_INBOUND_MAX
last_cmd last command that was evaluated
last_cmd_return result of last command that was evaluated

Figure 2c. Outbound space verification

 Room for
 num+2 bytes
 outbound
 ?

Yes

No

 Receive number of
bytes to check *num

Append the command
CMD_ERROR and a
response byte of
RET_OUTBOUND_
OVERRUN to the
outbound buffer, update
outbound length

 Done, return
 TRUE

 Done, return
 FALSE

Reference
num - the number of bytes needed in

outbound buffer
*See reference in Table 3

07-10-98 Dallas Semiconductor and Brüel & Kjær

16

Detailed Command Description

CMD_ML_RESET
The CMD_ML_RESET command resets all MicroLAN devices and detects whether at least one device is
present. If a device is not present then the return code RET_NO_DEVICE is placed in the outbound
buffer and inbound buffer processing stops. This command uses the DATA_MODE data register for the
communication speed at which the reset signal is sent to the MicroLAN.

Example: reset devices on MicroLAN

inbound CMD_ML_RESET

outbound CMD_ML_RESET <return byte>

Figure 3a. Processing command CMD_ML_RESET

 Receive *cmd
(CMD_ML_RESET)

Reset the MicroLAN
devices

 Presence
 of devices
 detected
 ?

Yes

No
Set the return value to
RET_NO_DEVICE

Append cmd and
return value to
outbound

 Done, return
 the (return) value

*See reference in Table 3

Set the return value to
RET_SUCCESS

07-10-98 Dallas Semiconductor and Brüel & Kjær

17

CMD_ ML_SEARCH
The CMD_ML_SEARCH command performs a search using the current search state in the repeater to
find the 'next' device on the MicroLAN. The command does NOT do a MicroLAN reset before the search.
A CMD_ML_RESET command must be used before CMD_ML_SEARCH in most cases. This command
uses the search state information in the repeater data register DATA_SEARCH_STATE and DATA_ID.
To reset the search to find the 'first' device on the MicroLAN, set the two bytes in the
DATA_SEARCH_STATE data register to 0. See the DATA_SEARCH_STATE command description for
more details on its use. This command uses the DATA_MODE data register for the communication
speed at which the search is performed on the MicroLAN. See Appendix for a detailed description of the
MicroLAN search algorithm.

Example: search for the first device on the MicroLAN. Reset the search state
and then do a search. Read the ID of the discovered device.

 inbound DATA_SEARCH_STATE <2><0,0>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

Example: search for the next two devices on the MicroLAN and return the ID's of
these devices.

 inbound CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>
CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

07-10-98 Dallas Semiconductor and Brüel & Kjær

18

Figure 3b. Processing command CMD_ML_SEARCH

 Receive *cmd
(CMD_ML_SEARCH)

Based on contents of
DATA_ID and
DATA_SEARCH_STATE
search the MicroLAN
(see Appendix)

From the contents of
DATA_SEARCH_STATE
look if the previous
MicroLAN search was the
last device in the search
sequence

 Previous
 last device
 ?

Yes

No

Set the return value to
RET_END_SEARCH

Set the return
value to
RET_SUCCESS

Append cmd and return
value to outbound

 Done, return
 the (return) value

Reset the search state
DATA_SEARCH_STATE

 Was a
device
found
 in search
 ? No

Yes

*See reference in Table 3

07-10-98 Dallas Semiconductor and Brüel & Kjær

19

CMD_ ML_ACCESS
The CMD_ML_ACCESS command selects the device whose ID number is in the data register DATA_ID.
The MicroLAN device is selected by using the 'Match ROM' command. This command is used by first
resetting the line with the CMD_ML_RESET command, sending the 'Match ROM' command of 55 hex
and then sending the 8 byte ID from DATA_ID.
At this point the MicroLAN device will be 'accessed'. It is then ready for device specific commands.
This command returns the return code RET_NO_DEVICE if CMD_ML_RESET fails and
RET_ML_SHORTED if any other problem is detected. On success the return code is RET_SUCCESS.
This command uses Speed bit in the DATA_MODE data register to select the communication speed at
which the access is performed on the MicroLAN.

Example: set the current device ID and then select that device.

inbound DATA_ID <8><8 bytes of ID>
CMD_ML_ACCESS

outbound CMD_ML_ACCESS <return byte>

Figure 3c. Processing command CMD_ML_ACCESS

 Receive *cmd
(CMD_ML_ACCESS)

Perform the command
CMD_ML_RESET

*See reference in Table 3

 Is result
 success
 ?

Yes

No Set the return value to
RET_NO_DEVICE

Send the MATCH_ROM
command to the MicroLAN
and verify echo

Send the 8 bytes of the
DATA_ID to the MicroLAN
and verify each echo

 Echo of
data correct
 ?

Yes

No Set the return value to
RET_ML_SHORTED

Set the return value to
RET_SUCCESS

 Done, return
 the (return) value

Append cmd and return
value to outbound

07-10-98 Dallas Semiconductor and Brüel & Kjær

20

CMD_ ML_OVERDRIVE_ACCESS
The CMD_ML_OVERDRIVE_ACCESS command selects the device whose ID number is in the data
register DATA_ID and at the same time places the device and repeater into Overdrive communication
speed. This is done by first forcing the repeater into normal speed by clearing the Speed bit in the
DATA_MODE register. The MicroLAN is then reset at normal speed with the CMD_ML_RESET
command.
If CMD_ML_RESET detects a device presence then the 'Overdrive Match ROM' command (69 hex) is
sent also at normal speed. At this point the Speed bit in the DATA_MODE register is set forcing the
repeater into Overdrive communication speed. The 8 byte ID in DATA_ID is then transmitted at
Overdrive speed. The Speed bit remains set in Overdrive after this command is completed. This
command returns the return code RET_NO_DEVICE if CMD_ML_RESET fails and
RET_ML_SHORTED if any other problem is detected. On success the return code is RET_SUCCESS.

Note that for this command to operate the repeater must be capable of Overdrive speed (see
DATA_CAPABILITY command) and the current device whose ID is in DATA_ID must be an Overdrive
capable device. If overdrive mode is not supported by the repeater then use of this command will result
in RET_CMD_UNKNOWN.

Example: set the current device ID and then select that device and place it and
the repeater into Overdrive..

inbound DATA_ID <8><8 bytes of ID>
CMD_ML_OVERDRIVE_ACCESS
DATA_MODE <00>

outbound CMD_ML_OVERDRIVE_ACCESS <return byte>
DATA_MODE <01><01 (Overdrive)>

07-10-98 Dallas Semiconductor and Brüel & Kjær

21

Figure 3d. Processing command CMD_ML_OVERDRIVE_ACCESS

 Receive *cmd
 (CMD_ML_OVER-
 DRIVE_ACCESS)

Perform the command
CMD_ML_RESET

*See reference in Table 3

 Is result
 success
 ?

Yes

No Set the return value to
RET_NO_DEVICE

Send the OVERDRIVE_-
MATCH_ROM command to
the MicroLAN and verify
echo

Send the 8 bytes of the
DATA_ID to the MicroLAN
and verify each echo

 Echo of
data correct
 ?

Yes

No Set the return value to
RET_ML_SHORTED

Set the return value to
RET_SUCCESS

Append cmd and return
value to outbound

Clear Speed bit in
DATA_MODE forcing into
normal speed

Set Speed bit in
DATA_MODE forcing into
overdrive speed

 Done, return
 the (return) value

 DATA_
CAPABILITIY
 have OD
 ?

Yes

No Set the return value to
RET_CMD_UNKNOWN

07-10-98 Dallas Semiconductor and Brüel & Kjær

22

CMD_RESET
Repeater Reset resets the repeater and brings it up in the default state. Any data content in the
outbound buffer not already read by the host will be lost after CMD_RESET. See Table 4 for the default
values that are set by CMD_RESET.

Example: reset the state of the repeater to its default

inbound CMD_RESET

outbound CMD_RESET <return byte>

Table 4. Default values

Repeater State Default Value
DATA_ID 0,0,0,0,0,0,0,0
DATA_SEARCH_STATE 0,0
DATA_SEARCH_CMD F0 hex
DATA_MODE 0 (Normal speed)
DATA_CAPABILITY repeater specific
DATA_OUTBOUND_MAX repeater specific, 49 bytes minimum
DATA_INBOUND_MAX repeater specific, 49 bytes minimum
DATA_PROTOCOL "ML100" for this specification
DATA_VENDOR repeater specific
outbound length 0
last_cmd CMD_ML_RESET (80 hex)
last_cmd_return RET_SUCCESS (00 hex)
LastDeviceFlag 0

Figure 3e. Processing command CMD_RESET

 Receive cmd
 (CMD_RESET)

Reset the state of the
repeater to it's default

 Done, return
 the (return) value

Append cmd and return
value to outbound

Set the return value to
RET_SUCCESS

*See reference in Table 3

07-10-98 Dallas Semiconductor and Brüel & Kjær

23

CMD_GETBUF
The CMD_GETBUF command sends the current contents of the outbound buffer back to the host. Any
further commands in the inbound buffer is ignored. The CMD_GETBUF command should therefore
always be the last command in the inbound buffer.

The outbound buffer remain unchanged after processing of CMD_GETBUF. The host can therefore
always request retransmission of the outbound buffer by sending a new CMD_GETBUF command
(should something have gone wrong during the previous transmission).

A command in the inbound buffer following processing of a CMD_GETBUF command will reset the
outbound buffer before the new command is processed. See the Command Processing Description for
details on CMD_GETBUF.

Figure 3f. Processing command CMD_GETBUF

CMD_ERROR
The error command is only used in the outbound buffer as a way to convey errors back to the host. It
can typically be errors resulting from processing of multi-byte commands. If this command occurs in the
inbound buffer it is copied to the outbound buffer with the return status RET_CMD_UNKNOWN.

DATA_ ID
The DATA_ID command allows reading and writing of the 8 byte device ID register in the repeater. This
register contains the ID of the last device found on the MicroLAN. This register is both used in the current
search to find the 'next' device on the MicroLAN and is also the location for the result of that search. The
length is 8 bytes with a default value of all 0's.

The Figure 3g flow diagram displays the general flow for commands that read or write repeater registers.
Note that some repeater registers can only be read (read-only, length byte zero) and some can only be
written (write-only, length byte non-zero).

 Receive *cmd
 (CMD_GETBUF)

Send the outbound buffer
to the host.

*See reference in Table 3

Set the return value to a
Halt condition

 Done, return
 the (return) value

07-10-98 Dallas Semiconductor and Brüel & Kjær

24

Figure 3g. Processing data register commands

 Receive *cmd,
 data_length, and
 data_bytes

 Is
data_length
 = 0?

Yes (read)

No (write)

 Is this
 register
 write-only
 ?

No

Yes Set the return value to
RET_WRITE_ONLY

Check for room in
outbound for 2 +
length of register (num)
bytes (see Figure 2d)

 Was
 there room
 in outbound
 ?

Yes

No Set return value to
RET_OUTBOUND_
OVERRUN

Copy the command
cmd and the length of
the register into
outbound

Copy the data register
contents into the
outbound buffer

Set return value to
RET_SUCCESS

 Is data_
length > reg
 size?

Yes

No

Set the return value to
RET_REG_OVERRUN

Copy data_length
number of bytes
starting at data_bytes
into the repeater's
register

Set return value to
RET_SUCCESS

 Done, return
 the (return) value

 Is this
 register
 read-only
 ?

Yes

No

Set the return value to
RET_READ_ONLY

*See reference in Table 3

Set remainder of
repeater's register to
zeros

07-10-98 Dallas Semiconductor and Brüel & Kjær

25

DATA_ SEARCH_STATE
The DATA_SEARCH_STATE command enables reading and writing to the two byte register that keeps
that count of the last search and is used to find the 'next' device in the current search. These two bytes
can be set in combination with DATA_ID to achieve targeted searches of a particular family code. The
default value is all 0's. The first byte in this search state is the LastDiscrepancy number. This indicates
the search path that was taken on the last search. This number is needed to continue a search where
the previous search left off. The second byte is the LastFamilyDiscrepancy which in indicates that last
search direction that was taken within the key family code byte of the DATA_ID. A third byte in the
search state is a flag LastDeviceFlag that indicates the last search was the final device on this search of
the MicroLAN. The LastDeviceFlag is internal to the repeater and is automatically cleared when writing
to DATA_SEARCH_STATE. The Figure 3g flow diagram displays the general flow for commands that
read or write repeater registers. See Appendix for a detailed description of the MicroLAN search
algorithm.

Table 5. MicroLAN search state description

Byte variable Name Description Byte
Number

LastDiscrepancy Bit index to the DATA_ID register. Identifies
from which bit the (next) search discrepancy
check should start.
For example will a value of 9 cause the next
search discrepancy to start from the 9th bit in
the DATA_ID register. The search is therefore
limited to devices identified by the first 8 bits in
DATA_ID (the device family code).
The default value is 0 (search for all devices).

0

LastFamilyDiscrepancy Bit index to the DATA_ID register. It is updated
during search to identify the first bit in
DATA_ID where a selection between two
MicroLAN devices was made. It is only
updated within the first 8 bits of DATA_ID (the
device family bits).
If the next search starts from this bit index the
search will be for devices in the next device
family. See Appendix for a description of how
this value is updated by the search algorithm.

1

There are five types of operations that can be performed by using the CMD_ML_SEARCH command and
manipulating the DATA_SEARCH_STATE and DATA_ID register values. These operations concern
discovery and verification of the ID's of MicroLAN devices.

FIRST
The 'FIRST' operation is to search on the MicroLAN for the first device. This is performed by setting all
three bytes of DATA_SEARCH_STATE to zero and calling CMD_ML_SEARCH. The resulting ID
number can then be read from the DATA_ID register. If no devices are present on the MicroLAN the
CMD_ML_RESET will return RET_NO_DEVICE. If an error occurred during the search itself then
CMD_ML_SEARCH will return RET_END_SEARCH.

07-10-98 Dallas Semiconductor and Brüel & Kjær

26

Example: Find the first device on the MicroLAN and read the ID.

inbound DATA_SEARCH_STATE <2><0,0>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ID>

NEXT
The 'NEXT' operation is to search on the MicroLAN for the next device. This search is usually performed
after a 'FIRST' operation or another 'NEXT' operation. This is performed by leaving the two bytes of
DATA_SEARCH_STATE unchanged from the previous search and calling CMD_ML_SEARCH. The
resulting ID number can then be read from the DATA_ID register. If the last search was the last device
on the MicroLAN or an error occurred during the search itself then CMD_ML_SEARCH command will
return RET_END_SEARCH.

Example: Find the next device on the MicroLAN and read the ID.

inbound CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

TARGET
The 'TARGET' operation is a way to pre-set the search state to first find a particular family type. Each
MicroLAN device has a one byte 'family code' embedded within the ID number. This 'family code' allows
the MicroLAN master to know what operations this device is capable of. If there are multiple devices on
the MicroLAN it is common practice to target a search to only the family of devices that are of interest.
To target a family set the DATA_SEARCH_STATE to 09, 00 (hex). This sets the LastDiscrepancy to
beyond the family code. Then set the desired family code byte into the first byte of the DATA_ID
register.
Now call the CMD_ML_SEARCH function and then read the resulting ID in the DATA_ID register. Note
that if no device of the desired family are currently on the MicroLAN another type will be found so the
family code in the DATA_ID must be checked.

07-10-98 Dallas Semiconductor and Brüel & Kjær

27

Example: Target a family type and find the first device of that type on the
MicroLAN and read it's ID.

inbound DATA_SEARCH_STATE <2><09,00>
DATA_ID <1><family code>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>
DATA_SEARCH_STATE <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>
DATA_SEARCH_STATE <2><2 bytes of search state>

SKIP
The 'SKIP' operation is to skip all of the devices that have the family type that were found in the previous
search on the MicroLAN. This operation can only be performed after a search. It is accomplished by
copying the LastFamilyDiscrepancy (byte 1) into the LastDiscrepancy (byte 0) of the
DATA_SEARCH_STATE and then performing another search with CMD_ML_SEARCH. The following
example assumes that we have already performed a search and know the contents of
DATA_SEARCH_STATE.

Example: Skip all MicroLAN devices with the family type found on last search
and find the next device of a different type and read it's ID.

inbound DATA_ SEARCH_STATE <2><LastFamilyDescrepancy,
 00>

CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

VERIFY
The 'VERIFY' operation verifies if a device with a know ID is currently connected to the MicroLAN. It is
accomplished by supplying the ID and doing a targeted search on that ID to verify it is present. First, set
the DATA_ID register to the known ID. Then set the LastDiscrepancy (byte 0) in the
DATA_SEARCH_STATE to 64 (40 hex). Perform the search operation with CMD_ML_SEARCH and
then read the DATA_ID result. If the search was successful and the DATA_ID remains the ID that was
being searched for then the device is currently on the MicroLAN.

07-10-98 Dallas Semiconductor and Brüel & Kjær

28

Example: Set the ID and verify that this MicroLAN device is currently connected.

inbound DATA_ SEARCH_STATE <2><40, 00>
DATA_ID <8><ID of device to verify>
CMD_ML_RESET
CMD_ML_SEARCH
DATA_ID <0>

outbound CMD_ML_RESET <return byte>
CMD_ML_SEARCH <return byte>
DATA_ID <8><8 bytes of ROM>

DATA_ SEARCH_CMD
The DATA_SEARCH_CMD command enables reading and writing to the one byte register that contains
the command used during a search operation. Currently the two valid commands are F0 (hex) for a
normal search and EC (hex) to find only alarming devices. The length is 1 byte with a default value of
F0 (hex). The Figure 3g flow diagram displays the general flow for commands that read or write
repeater registers.

DATA_MODE
The DATA_MODE command enables reading and writing to the one byte register that contains the
current speed and level modes of the MicroLAN on the repeater. Table 6 describes the predefined mode
bit flags. Writing to this register will result in an immediate change in the state of MicroLAN so that the
mode can be manipulated in the middle of a command block. If the repeater does not have the
capability to do the operation specified in the bit flags then there will be no effect. Consult the
DATA_CAPABILIY data register. The Figure 3g flow diagram displays the general flow for commands
that read or write repeater registers.

Table 6. Bit description of MicroLAN mode flags in the DATA_MODE register.

Mode Bit Name Description Bit
Number

Speed Normal speed if 0 and overdrive if 1 0
PowerDelivery Normal 5 volt pull-up if 0 and strong pull-up if 1 1
ProgramVoltage 12 volt programming voltage disabled if 0 and enabled if

1 (PowerDelivery and PowerDown must be disabled)
2

PowerDown low impedance zero voltage used to power down the
MicroLAN bus (PowerDelivery and ProgramVoltage
must be disabled)

3

(Reserved) Reserved for future expansion of this protocol
specification. Use 0,0 as default.

4,5

(Vendor
specific)

Vendor specific mode flags. Before setting any of these
bits the host should use the DATA_VENDOR command
to identify that the expected repeater type is present.
This precaution will prevent functionality contention
between different repeater vendors. Use 0,0 as default.

6,7

DATA_CAPABILITY
The DATA_CAPABILITY command enables reading the one byte register that contains the capabilities of
repeater for MicroLAN communication power delivery and speed. Table 7 describes the predefined
feature bit flags. The Figure 3g flow diagram displays the general flow for commands that read or write
repeater registers. Note that the DATA_CAPABILITY register is read-only.

07-10-98 Dallas Semiconductor and Brüel & Kjær

29

Table 7. Bit description of MicroLAN capability flags in the DATA_CAPABILITY register.

Capability Bit
Name

Description Bit
Number

Overdrive_C Overdrive speeds available if 1, only normal speed is
available if 0

0

PowerDelivery_C Strong 5-volt pull-up power delivery available if 1,
only normal communication pull-up available if 0

1

ProgramVoltage_C 12 volt programming voltage available if 1, not
available if 0

2

PowerDown_C low impedance zero voltage available if 1, not
available if 0

3

(Reserved) Reserved for future expansion of this protocol
specification

4,5

(Vendor specific) Vendor specific mode flags 6,7

DATA_OUTBOUND_MAX
The DATA_OUTBOUND_MAX command enables reading the one byte register that contains the
predefined maximum data length in bytes of the outbound buffer. The minimum size of the outbound
buffer is 48 bytes not including the length byte. The Figure 3g flow diagram displays the general flow for
commands that read or write repeater registers. Note that the DATA_OUTBOUND_MAX register is read-
only.

Note that because there should always be room for a final error message (two bytes) in the outbound
buffer, the effective size which can be depended on during MicroLAN communication is two bytes less
than DATA_OUTBOUND_MAX.

DATA_INBOUND_MAX
The DATA_INBOUND_MAX command enables reading the one byte register that contains the
predefined maximum data length in bytes of the inbound buffer. The minimum size of the inbound buffer
is 48 bytes not including the length byte. The Figure 3g flow diagram displays the general flow for
commands that read or write repeater registers. Note that the DATA_INBOUND_MAX register is read-
only.

DATA_PROTOCOL
The DATA_PROTOCOL command enables reading the zero terminated string that represents the
protocol name and version. This specification describes version 1.00, represented by the
DATA_PROTOCOL string "ML100". The Figure 3g flow diagram displays the general flow for
commands that read or write repeater registers. Note that the DATA_PROTOCOL register is read-only.
The maximum length of this C-string is 20 bytes including the 0 termination.

DATA_VENDOR
The DATA_VENDOR command enables reading the zero terminated string that represents the vendor
name. This is used to identify vendor-specific commands and modes. The Figure 3g flow diagram
displays the general flow for commands that read or write repeater registers. Note that the
DATA_VENDOR register is read-only. The maximum length of this C-string is 20 bytes including the 0
termination.

CMD_ ML_BIT
The CMD_ML_BIT gives bit level communication with the MicroLAN. The CMD_ML_BIT is a multi-byte
command so it provides a length byte that must be greater then 0 and one or more data bytes. Each
data byte provided represents one bit of communication. The least significant bit of each data byte is
sent to the MicroLAN and the result of that bit communication is placed into a byte in the outbound buffer

07-10-98 Dallas Semiconductor and Brüel & Kjær

30

in a multi-byte read format. This command uses the DATA_MODE data register for the communication
speed at which the bit operation is performed on the MicroLAN.

Example: Do the first two bits of the search algorithm manually

inbound CMD_ ML_RESET
CMD_ ML_DATA <2><length=1><0F>
CMD_ ML_BIT <2><01,01>

outbound CMD_ML_RESET <return byte>
CMD_ ML_DATA <1><0F>
CMD_ML_BIT <2><result1,result2>

07-10-98 Dallas Semiconductor and Brüel & Kjær

31

Figure 3h. Processing command CMD_ML_BIT

*See reference in Table 3

Check for room in
outbound for 2 +
data_length (num)
bytes (see Figure 2d)

 Was
 there room
 in outbound
 ?

Yes

No Set return to
RET_OUTBOUND_
OVERRUN

Append command
(cmd) and length
(data_length) to
outbound

 Receive *cmd
(CMD_ML_BIT), data_
length, and data_bytes

 Done
 with data_
 bytes
 ?

No

Yes

Do 1 bit operation on
MicroLAN using LSBit
of next data_bytes

Append result to
outbound buffer

Set return to
RET_SUCCESS

 Done, return
 the (return) value

 Is
 data_length
 >0?

Yes

No Set return to
RET_WRITE_ONLY

07-10-98 Dallas Semiconductor and Brüel & Kjær

32

CMD_ ML_DATA
The CMD_ML_DATA gives block level communication with the MicroLAN. The CMD_ML_BLOCK is a
multi-byte command so it provides a length byte that must be greater then 0 and one or more data bytes.
The first data byte defines the total MicroLAN block length in bytes. The data bytes following the block
length are sent to the MicroLAN and the result of that byte communication is placed into a byte in the
outbound buffer in a multi-byte read format. If the block length is greater then the provided number of
data bytes then the remainder of the block length are processes as FF hex bytes. This is normally a
read operation from a MicroLAN device. This command uses the DATA_MODE data register for the
communication speed at which the block operation is performed on the MicroLAN.

Example: Read the first 32 bytes of memory from the MicroLAN memory device
with the ID number in DATA_ID.

inbound CMD_ ML_ACCESS
CMD_ ML_DATA <3><length=34><F0, 00>

outbound CMD_ML_ACCESS <return byte>
CMD_ ML_DATA <34><2 bytes of write data echo and

 32 bytes of read data>

07-10-98 Dallas Semiconductor and Brüel & Kjær

33

Figure 3i. Processing command CMD_ML_DATA

Check for room in
outbound for 2 +
block_length (num)
bytes (see Figure 2d)

 Was
 there room
 in outbound
 ?

Yes

No Set return to
RET_OUTBOUND_
OVERRUN

Append command
(cmd) and length
(block_length) to
outbound

 Receive *cmd
(CMD_ML_DATA), data_
length, and data_bytes

 Is
 data_length
 >0?

Yes

No

 Done
 with data_
 bytes
 ?

No

Yes

Set return to
RET_WRITE_ONLY

Do 1 byte operation on
MicroLAN using next of
data_bytes

Retrieve the first of the
data_bytes as the
block_length

Append result to
outbound buffer

Set return to
RET_SUCCESS

 Done, return
 the (return) value

Reference
block_length - total number of bytes

to send in a block to MicroLAN
*See reference in Table 3

 Done
 with block_
 length bytes
 ?

No

Yes

Do 1 byte operation on
MicroLAN using FF hex

Append result to
outbound buffer

07-10-98 Dallas Semiconductor and Brüel & Kjær

34

CMD_DELAY
The CMD_DELAY command pauses the execution of the parsing of the inbound buffer by the amount of
time specified in the one data byte provided. The delay command must at minimum delay the
prescribed amount. It may however go longer. This command is used to time programming and power
delivery type MicroLAN functions usually in conjunction with the DATA_MODE command. This one byte
value provides a wide range of delay times by providing the following meaning to the bit values. The
most significant bit is a flag that when set indicates the value will be in milliseconds and when not set the
value is in microseconds. The lower 3 bits represented by X will be used in the following formula
2^(5+X) to give the values displayed in Table 8.

Example: send a EPROM programming pulse on the MicroLAN.

inbound DATA_MODE <04 (hex) (12 volt pulse on)>
CMD_DELAY <1><04 (hex) 512 microseconds)>
DATA_MODE <00 (hex) (12 volt pulse off)>

outbound

Table 8. Delay byte time values.

Delay Byte Time
 00 (hex) 32 microseconds
 01 64
 02 128
 03 256
 04 512
 05 1024
 06 2048
 07 4096
 80 32 milliseconds
 81 64
 82 128
 83 256
 84 512
 85 1024
 86 2048
 87 4096

07-10-98 Dallas Semiconductor and Brüel & Kjær

35

Figure 3j. Processing command CMD_DELAY

 Receive *cmd
(CMD_DELAY), data_
length, and data_bytes

 Is
 data_length
 =1?

Yes

No Set return value to
RET_WRITE_ONLY

Retrieve the first of the
data_bytes as the
delay_value

Reference
delay_value - 1 byte value

representing the delay time
*See reference in Table 3

Pause parsing of the
inbound buffer for
delay_value time

Set return value to
RET_SUCCESS

 Done, return
 the (return) value

07-10-98 Dallas Semiconductor and Brüel & Kjær

36

Appendix

MicroLAN Search Algorithm

Dallas Semiconductor's MicroLAN devices each have a 64 unique ID that is used to address them
individually. If the ID's of the devices on the MicroLAN are not know, they can be discovered by going
through the Search Algorithm. The Search Algorithm begins with the devices on the MicroLAN being
reset using the CMD_ML_RESET command. It this is successful then the one byte search command is
sent. The search command readies the MicroLAN devices to begin the search.

The search command resides in the data register DATA_SEARCH_CMD. The search command is
configurable because there are currently two types of searches. The normal search command (0F hex)
will perform a search with all devices participating. The alarm search command (EC hex) will perform a
search with only the devices that are in some sort of alarm state. This reduces the search pool to quickly
respond to devices that need attention.

The actual search then begins with all of the participating devices simultaneously sending the first bit in
their ID. Due to the characteristics of the MicroLAN, this will be a logical AND of the first bit in all of
devices. Next, the devices send the compliment of the first bit in their ID. This also is the logical AND of
the compliment of the first bit. From these two bits, information about the first bit in the ID is know (See
Table A1).

Table A1. Bit search information.

Bit Compliment Bit Information Known
0 0 there are both 0's and 1's in the bit of the participating ID's
0 1 there are only 0's in the bit of the participating ID's
1 0 there are only 1's in the bit of the participating ID's
1 1 no devices participating in search

The Search Algorithm must then broadcast a bit back to the participating devices. If the participating
device has that bit value, it continues participating. If it does not have that bit value, then it goes into a
shutdown state until the next MicroLAN reset is detected. This 'read two bits', and 'write one bit' pattern
is then repeated for the remaining 63 bits of the ID. In this way the Search Algorithm forces all but one
device to go into the shutdown state. At the end, the ID number of this last device is known. On
subsequent passes of the search, a different path is taken to find the other device ID's.

On examination of Table A1, it is obvious that if all of the participating devices have a 0 or 1 then that is
path that should be taken. The condition where 'no devices are participating' is an atypical situation
which may arise if the device being discovered is removed from the MicroLAN during the search. The
condition where there are both 0's and 1's in the bit position is called a discrepancy and is the key to the
search. The Search Algorithm specifies that on the first time through, when there is a discrepancy
(bit/compliment = 0/0), the '0' path is taken. The bit position for the last discrepancy is recorded for use
in the next search. Table A2 describes the paths that are taken on subsequent searches.

Table A2. Path direction based on the search bit position and the last discrepancy

Search Bit Position verses
Last Discrepancy

Path Taken

= take the '1' path
< take the same path as last time (from DATA_ID)
> take the '0' path

The Search Algorithm also keeps track of the last discrepancy that occurs within the first 8 bits of the
algorithm. The first 8 bits of the 64 bit ID number is a family type. As a result, the devices discovered
during the search are grouped into family types. The last discrepancy within that family type can be used

07-10-98 Dallas Semiconductor and Brüel & Kjær

37

to selectively skip whole groups of MicroLAN devices. See the description of DATA_ SEARCH_STATE
for a description of doing selective searches. The 64 bit ID number also contains an 8 bit cyclic-
redundancy-check (CRC). This CRC value is verified to make sure an erroneous ID is not discovered.

Figure A1. Searching the MicroLAN based on DATA_ID and DATA_SEARCH_STATE.

 Is Last-
DeviceFlag
 = 1?

No

Yes

Set id_bit_number to 1.
Set last_zero to 0

Reference
id_bit_number - the ID bit number 1

to 64 currently being searched
last_zero - bit position of the last zero

written where there was a
discrepancy

id_bit - the first bit read in a bit
search sequence. This bit is the
AND of all of the id_bit_number
bits of the devices that are still
participating in the search.

cmp_id_bit - the compliment of the
id_bit. This bit is the AND of the
compliment of all of the
id_bit_number bits of the devices
that are still participating in the
search.

search_direction - bit value
indicating the direction of the
search. All devices with this bit
stay in the search and the rest
wait for a reset.

LastDeviceFlag - flag to indicate
previous search was the last
device.

LastDiscrepancy,
LastFamilyDiscrepancy - (see
Table 5)

Send search command
in DATA_SEARCH_CMD

 1

 2

 Get DATA_SEARCH_
STATE and DATA_ID

07-10-98 Dallas Semiconductor and Brüel & Kjær

38

Figure A1. (continued)

Read ID bit (id_bit)
and compliment ID bit
(cmp_id_bit) from
MicroLAN

 id_bit =
cmp_id_bit
 = 1

No

Yes

 id_bit_number =
 LastDiscrepancy
 ?

Yes

No id_bit =
cmp_id_bit
 = 0?

No

Yes id_bit_number >
 LastDiscrepancy
 ?

Yes

No

 1

Set search_direction
bit to id_bit

Set search_direction
bit to 1

Set search_direction
bit to 0

Set search_direction
bit to id_bit_number
bit in DATA_ID search_-

direction =
 0?

No Yes Set last_zero
to current
id_bit_number

Set id_bit_number bit
in DATA_ID to
search_direction and
send to MicroLAN

Increment
id_bit_number

 id_bit-
number >
 64?

YesNo Set LastDiscrepancy
to last_zero

 Last-
Discrepancy
 = 0?

No

Yes Set
LastDeviceFlag

 3

 2

 Is
last_zero
 < 9?

No Yes
Set LastFamily-
Discrepancy to
last_zero

07-10-98 Dallas Semiconductor and Brüel & Kjær

39

Figure A1. (continued)

 3

 CRC8 of
 DATA_ID
 correct?

Yes

No

Set return value to
TRUE

Set return value to
FALSE

Reset search
LastDiscrepancy = 0
LastFamilyDiscrepancy = 0
LastDeviceFlag = 0

 Done

 2

